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Motivation

e Past works have focused primarily on the performance and portability of
codes across differing hardware architectures

e Performance portability is also required between compilers on the same
architecture

 Explore performance portability using widely available benchmarks and
mini-apps

 Provide feedback to vendors on issues identified
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Benchmarks & Mini-Apps

e SPEC ACCEL (Standard Performance Evaluation Corporation Accelerator
suite)
— Collection of computationally intensive parallel applications in C and Fortran
— Includes OpenACC, OpenMP target offload, and OpenCL versions
e GenASiS (General Astrophysics Simulation System)
— A simulation system (a collection of solvers, manifolds, physics) for astrophysics
simulation
— A subdivision, GenAS1S Basics, contains simplified proxy-applications
e su3
— mini-application extracted from MILC (Lattice QCD code)
— matrix-matrix multiply with complex numbers
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Experimental Setup: SPEC ACCEL

e SPEC ACCEL (https://www.spec.org/accel)

— Three benchmark sets: OpenCL, OpenACC, and OpenMP
e Here we focus on OpenACC and OpenMP sets
e ACC: contains OpenACC ports
e OMP: contains OpenMP ports

— Consists of 15 benchmarks in a wide range of domains: thermodynamics, molecular
dynamics, image processing, and more!
e 7inC;6in Fortran; 2 use C & Fortran
e Target system: Summit
— ACC experiments:
e PGI20.1,GCC9.2.0

— OMP experiments:
e XL16.1.1 PTF8, GCC9.2.0, LLVM 11.0.0-rc1 (C-only)

— Single node jobs offloading to a single
NVIDIA V100 GPU

Summit supercomputer (Source: ORNL)
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https://www.spec.org/accel

Results: SPEC ACCEL

%

e XL compiler and PGl compiler can compile

all benchmarks
— Improvement over previous XL versions

e GCC support can compile 11 OpenACC and

all OpenMP benchmarks
— 7 OpenMP and 2 OpenACC benchmarks
encounter runtime errors

e All but one of the C benchmarks compile

and run successfully with LLVM
— CSP encounters a compiler error
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Results: SPEC ACCEL
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Cloverleaf OpenACC / PGI:

e ~33x faster than OpenMP / GCC
e ~1.5x faster than OpenMP / XL
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fCIoverIeaf CUDA: h
e ~43x and ~2x faster than
OpenMP with GCC and XL,

respectively
e ~1.3x faster than PGl OpenACC
. P y,

Cloverleaf CUDA: https://uk-mac.github.io/

o

Cloverleaf on Summit
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https://uk-mac.github.io/

Lessons Learned: SPEC ACCEL

e More OpenMP implementations can now successfully compile the SPEC

ACCEL suite
e Can achieve good performance with OpenMP without significant changes
to the code

— More work is needed to match optimized CUDA versions for some of the
benchmarks

e GCC offloading has improved but performance gaps remain

e Need to work with implementation providers to report issues
— Iterative improvements resulted from collaboration with XL team
— Submitting issues for GCC
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Experimental Setup: GenASiS

e GenASiS Weak-scaling of GenASiS Basics RiemannProblem
— Target system: Summit, Frontier (future) ® GPU = 7Threads CPUs = = Ideal Scaling
— Programming model: 4.00E+02

e OpenMP (CPU + target offload)
e CUDA /HIP library routines, to supplement

missing functionality in OpenMP 4.5 3.00E+02 . e e o
e CUDA / HIP kernels (experimental only)
— Compilers: 2.00E+02

e XL Fortran 16.1.1 PTF 8, nvcc / hipcc, GCC
e 1 GPU + n CPU threads per MPI task

b ) ) 1.00E+02
— “proportional resource tests
comparisons on Summit: P OB B--0-0 0.0 00000008
0.00E+00
7 CPU threads + 1 GPU per MPI task: B 100 1000

jsrun -ré6 -c7 -gl -al -bpacked:7
Number of MPI Ranks
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Results: GenASiS Basics RiemannProblem
Kernel timings for 50 cycles, 3D - 2563 cells per GPU (lower is better/faster)

® XL OpenMP V100 ™ nvcc (CUDA) m GCC 10.1.0 OpenMP V100/25 m XL OpenMP 7-Threads / 25

8.00E+00

6.00E+00 Timings for XL 7-threads CPU and
GCC 10.1.0 OpenMP offload on are
scaled down by 25X to fit this plot.
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Lesson Learned from GenASiS

e Explicit memory management and control of data movement is essential

for performance
— persistent memory allocation on the device
— explicitly map data location on GPU - avoid (implicit) allocation and transfer

/e Performance parity between OpenMP offload and CUDA is achievable
— OpenMP is more portable

— OpenMP has benefits of being more “natural” to the application

— compilers need to do a good job of optimization

— no need to rewrite kernels, simpler to port from multi-threading to GPU offload
\ — can continue to exploit base language feature (Fortran) y
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Experimental Setup: su3

e su3 mini-app
— Target system: Cori GPU Nodes, Summit
— Programming model: OpenMP, CUDA

— Compilers:

Clang 11 [Cori]

CCE 9.0.0 (Classic) [Cori]
CCE 10.0.0 (LLVM) [Cori]
NVCC 10.2.89 [Cori, CUDA]
XL 16.0.0-5 [Summit]

— Mini-app: matrix-matrix multiply with
complex numbers, proxy for MILC
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Results: su3 mini-app

GFLOPs per Compiler ® Excess DRAM transactions responsible
NVCC (CUDQL) for Clang slowdown
Cray-ivm e Cray-classic slowdown associated with
Cray'cgzsnic small grid size, low utilization
g
0 200 400 600 800 1000 1200 o Can get 4.6x speedup by increasing
num_teams

#pragma omp target teams distribute
for(int i = 0; i < total sites; ++i) {

fpragna omp parsllel for collapse(3) e Unnecessary memory flushes in Clang
P caused by splitting directives,
fpragma omp target teams | interleaving code
#pragma omp parallel {
// compute istart, iend... . . . .
for (int i - istart; i < iend; ++i) | ® Restructuring directives gives an 18x
fpragma omp for collapse(3) .
// for loops... speedup with C|ang
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Lessons Learned: su3 mini-app

® Tuning is necessary for best performance across compilers

o Particularly of launch parameters: compiler defaults can be quite poor

e Splitting constructs can impair performance

O Avoid interleaving code between teams and parallel directives
e Some implementations are more robust than others

e Guide tuning and changes with profiling
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How To Get Efficient Compilers? --- Talk to the compiler people ...

Three (short) stories of application problems and better compilers

1. HPGMG

Application people: “One performance limiter | see with LLVM/Clang is a huge amount of time spent in
cuMemAlloc and cuMemFree calls.”

Compiler People (as | recall it): Thanks for reporting this, we’ll look into it!
Compiler People (as I recall it): Can you try this version?

Application people: “I now only see 1 cuMemAlloc [...] The net effect is that this particular version of HPGMG runs
2.4x faster”
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How To Get Efficient Compilers? --- Talk to the compiler people ...

Three (short) stories of application problems and better compilers

2. (Mini)QMCPack

- Observe a problem and file a bug:

Bug 46450 - More registers are used when multiple target regions are compiled together
(paraphrased)

- Compiler people: How to reproduce the problem?

- Application people: Here is a reproducer!
- Compiler people: |see, it’s a weird implementation detail, can you try this version please?

- Application people: It works for me, there are still issues but this solves my problem for now.
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https://bugs.llvm.org/show_bug.cgi?id=46450

How To Get EfflClent Compllers? --- TaIk to the compiler people...
Three (short) stc

3. GrIdMInI SU(E B unpatched, thread_limit(8) [ patched, thread_limit(8) CUDA(8 threads) ifeng Lin (BNL)]
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“Application/Compiler Team communication is key!
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Conclusions

e Performance portability is often required not just between architectures
but also between compilers on the same architecture

e As seen with GenASiS and SU(3)xSU(3), it is not necessary to sacrifice
performance for portability
— OpenMP kernels can achieve performance parity with their CUDA version

e As seen with su3, significant speedups can be attained by tuning
parameters and rearranging OpenMP directives

e Talk to compiler vendors about observations, issues, problems, and ideas!
— More implementations that perform well on various architectures benefit
everyone!
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Thank you! Questions?
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